Module stac_fastapi.sqlalchemy.app¶
FastAPI application.
Variables¶
api
app
extensions
handler
session
settings
Functions¶
create_handler¶
def create_handler(
app
)
Create a handler to use with AWS Lambda if mangum available.
run¶
def run(
)
Run app from command line using uvicorn if available.
Classes¶
post_request_model¶
class post_request_model(
__pydantic_self__,
**data: Any
)
Search model.
Replace base model in STAC-pydantic as it includes additional fields, not in the core model. github.com/radiantearth/stac-api-spec/tree/master/item-search#query-parameter-table
PR to fix this: stac-utils/stac-pydantic!100
Ancestors (in MRO)¶
- stac_fastapi.types.search.BaseSearchPostRequest
- pydantic.main.BaseModel
- pydantic.utils.Representation
Class variables¶
Config
Static methods¶
construct¶
def construct(
_fields_set: Optional[ForwardRef('SetStr')] = None,
**values: Any
) -> 'Model'
Creates a new model setting dict and fields_set from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow'
was set since it adds all passed values
from_orm¶
def from_orm(
obj: Any
) -> 'Model'
parse_file¶
def parse_file(
path: Union[str, pathlib.Path],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
parse_obj¶
def parse_obj(
obj: Any
) -> 'Model'
parse_raw¶
def parse_raw(
b: Union[str, bytes],
*,
content_type: 'unicode' = None,
encoding: 'unicode' = 'utf8',
proto: pydantic.parse.Protocol = None,
allow_pickle: bool = False
) -> 'Model'
schema¶
def schema(
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}'
) -> 'DictStrAny'
schema_json¶
def schema_json(
*,
by_alias: bool = True,
ref_template: 'unicode' = '#/definitions/{model}',
**dumps_kwargs: Any
) -> 'unicode'
update_forward_refs¶
def update_forward_refs(
**localns: Any
) -> None
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate¶
def validate(
value: Any
) -> 'Model'
validate_bbox¶
def validate_bbox(
v: Union[Tuple[Union[float, int], Union[float, int], Union[float, int], Union[float, int]], Tuple[Union[float, int], Union[float, int], Union[float, int], Union[float, int], Union[float, int], Union[float, int]]]
)
Check order of supplied bbox coordinates.
validate_datetime¶
def validate_datetime(
v
)
Validate datetime.
validate_spatial¶
def validate_spatial(
v,
values
)
Check bbox and intersects are not both supplied.
Instance variables¶
end_date
Extract the end date from the datetime string.
spatial_filter
Return a geojson-pydantic object representing the spatial filter for the search
request.
Check for both because the bbox
and intersects
parameters are
mutually exclusive.
start_date
Extract the start date from the datetime string.
Methods¶
copy¶
def copy(
self: 'Model',
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
update: Optional[ForwardRef('DictStrAny')] = None,
deep: bool = False
) -> 'Model'
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
include | None | fields to include in new model | None |
exclude | None | fields to exclude from new model, as with values this takes precedence over include | None |
update | None | values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data |
None |
deep | None | set to True to make a deep copy of the model |
None |
Returns:
Type | Description |
---|---|
None | new model instance |
dict¶
def dict(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False
) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json¶
def json(
self,
*,
include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None,
by_alias: bool = False,
skip_defaults: Optional[bool] = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
models_as_dict: bool = True,
**dumps_kwargs: Any
) -> 'unicode'
Generate a JSON representation of the model, include
and exclude
arguments as per dict()
.
encoder
is an optional function to supply as default
to json.dumps(), other arguments as per json.dumps()
.